Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(Aqua-2кO)bis(2,2'-bipyridine$\left.1 \kappa^{2} N, N^{\prime}\right)\{\mu$ - N-[3-(dimethylamino)-propyl]- N^{\prime}-(2-oxidophenyl)oxamid-ato(3-)-1:2 $\left.\kappa^{2} O, O^{\prime}: \kappa^{4} O^{\prime \prime}, N, N^{\prime}, N^{\prime \prime}\right\}$ copper(II)nickel(II) perchlorate

Xi-Teng Yue, ${ }^{\text {a }}$ Jin-Ju Nie, ${ }^{\text {b }}$ Yan-Tuan Li, ${ }^{\text {b }}$ * Zhi-Yong Wu ${ }^{\text {b }}$ and Cui-Wei Yan ${ }^{\text {c }}$
${ }^{\text {a Linyi University, }} 273400$ Linyi, Shandong, People's Republic of China, ${ }^{\text {b }}$ Marine Drug and Food Institute, Ocean University of China, 266003 Qingdao, People's Republic of China, and ${ }^{\text {c }}$ College of Marine Life Science, Ocean University of China, 266003 Qingdao, People's Republic of China
Correspondence e-mail: yantuanli@ouc.edu.cn

Received 30 January 2011
Accepted 7 March 2011
Online 16 March 2011
The title complex, $\left[\mathrm{CuNi}\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ ClO_{4}, has a cis-oxamide-bridged heterobinuclear cation, with a $\mathrm{Cu} \cdots \mathrm{Ni}$ separation of 5.3297 (6) \AA, counterbalanced by a disordered perchlorate anion. The $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{1 \mathrm{II}}$ cations are located in square-pyramidal and octahedral coordination environments, respectively. The complex molecules are assembled into a three-dimensional supramolecular structure through hydrogen bonds and $\pi-\pi$ stacking interactions. The influence of the two types of metal cation on the supramolecular structure is discussed.

Comment

The design and synthesis of heterometallic systems with two different paramagnetic centres has been an active field of research (Li, Wu et al., 2004; Tercero et al., 2002; Wang et al., 2004; Willett et al., 1985). Interest in this field is aimed at understanding the nature of electronic exchange coupling through multi-atom bridging ligands, and mimicking the active sites and functions of biological substances, as well as designing and preparing new magnetic materials (Baron et al., 1996; Li, Yan \& Guan, 2004). One of the best strategies for constructing heterobinuclear species is the 'complex as ligand' approach, using a complex which contains a potential donor group capable of coordinating to another metal cation (Cronin et al., 1999; Fukita et al., 2001). (N, N^{\prime}-Disubstituted oxamide)copper(II) mononuclear complexes are a very suitable type of ligand for designing heterometallic species, due to their ability to coordinate to metal cations as bidentate ligands through their carbonyl O atoms (Ruiz et al., 1999). To date, several heterobinuclear complexes based on symmetric N, N^{\prime} disubstituted oxamide ligands with interesting magnetic
properties have been reported (Brewer et al., 2001; Li, Wu et al., 2004; Li, Yan \& Guan, 2004; Nakatani et al., 1989, 1991; Nie et al., 2010; Sun et al., 2007; Tang et al., 2002, 2003; Wang et al., 2004). In contrast, little work has been carried out on assemblies of heterobinuclear complexes containing asymmetric N, N^{\prime}-disubstituted oxamides (Larionova et al., 1997; Pei et al., 1991), owing to the difficulty of their synthesis. To the best of our knowledge, no heterobinuclear copper(II)-nickel(II) complex bridged by an asymmetric N, N^{\prime}-disubstituted oxamide containing a phenolate group has hitherto been reported.

(I)

Recently, Gao \& Wang (2010) reported a binuclear copper(II) complex bridged by N-[3-(dimethylamino)propyl]-N^{\prime}-(2-oxidophenyl)oxamidate (pdmapo) and end-capped with 1,10 -phenanthroline (phen), namely $\left[\mathrm{Cu}(\mathrm{pdmapo})\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cu}-\right.$ (phen) NO_{3}, (II), but in order to provide more examples of pdmapo-bridged binuclear complexes and to better understand the factors affecting the supramolecular structures of these complexes, it is necessary to synthesize a series of binuclear complexes of essentially the same structure except for the metal cations. In this paper, we have selected the mononuclear copper(II) complex, $\mathrm{Na}[\mathrm{Cu}($ pdmapo $)] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, as the bridging ligand and $2,2^{\prime}$-bipyridine (bpy) as the terminal ligand, to synthesize the title new heterobinuclear copper(II)nickel(II) complex, formulated as $\left[\mathrm{Cu}(\right.$ pdmapo $)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Ni}-$ (bpy) $)_{2} \mathrm{ClO}_{4}$, (I), and we compare the crystal structure of (I) with that of (II).

Compound (I) consists of a heterobinuclear [Cu (pdmapo)$\left.\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Ni}(\mathrm{bpy})_{2}\right]^{+}$cation and an uncoordinated perchlorate anion (Fig. 1). The complex cation can be described as a cis-oxamide-bridged binuclear $\mathrm{Cu}^{\mathrm{II}}-\mathrm{Ni}^{\mathrm{iI}}$ fragment, in which the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{\text {II }}$ cations are at the inner and exo sites of the oxamide bridge, respectively. The $\mathrm{Cu} \cdots \mathrm{Ni}$ separation is 5.3297 (6) \AA. The Cu^{11} cation has an $\left\{\mathrm{N}_{3} \mathrm{O}_{2}\right\}$ square-pyramidal geometry with a τ value of 0.1 (Addison et al., 1984). The basal plane is defined by four coordination atoms from the oxamide ligand, with a maximum deviation from the least-squares plane of 0.1630 (15) \AA (for atom N 1). The apical position is occupied by a water molecule (O4), with a $\mathrm{Cu}-\mathrm{O}$ bond length of 2.456 (3) \AA (Table 1). The $\mathrm{Cu}^{\text {II }}$ cation is displaced 0.1976 (15) \AA from the basal plane. The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 2$ bonds are shorter than $\mathrm{Cu} 1-\mathrm{N} 3$, which is consistent with the stronger donor abilities of N atoms in $s p^{2}$ hybridization than $s p^{3}$ (Jubert et al., 2002). The $\mathrm{Ni}^{\text {II }}$ cation is chelated by two exo O atoms of the oxamide group and by two bpy

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered parts of the equally populated perchlorate anions have been drawn with different styles for clarity. [Symmetry codes: (ii) $-x+1,-y+1,-z$; (vi) $-x$, $-y+2,-z+1$.]
terminal ligands, viz. in an $\left\{\mathrm{N}_{4} \mathrm{O}_{2}\right\}$ octahedral environment. The equatorial plane is composed of atoms O2, N4, N6 and N7, with a maximum displacement of 0.0667 (14) \AA (for atom N 7); the $\mathrm{Ni}^{\mathrm{II}}$ cation deviates from this plane by 0.0280 (14) \AA.

The oxamide ligand (pdmapo ${ }^{3-}$) chelates the $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ cations with bite angles of 83.15 (10) and 81.98 (8) ${ }^{\circ}$, respectively. Within the bridging oxamide fragment, the $\mathrm{C} 7-\mathrm{O} 2$ [1.260 (4) Å], C8-O3 [1.274 (3) Å], C7-N1 [1.313 (4) Å] and C8-N2 [1.305 (4) Å] bond lengths imply partial doublebond character, similar to those in many other oxamidate complexes (Lloret et al., 1989; Real et al., 1993). The sixmembered chelate ring formed by the propylenediamine fragment adopts a screw-boat conformation, with puckering parameters (Cremer \& Pople, 1975) of $Q=0.649$ (4) $\AA, \theta=$ $108.8(4)^{\circ}$ and $\varphi=23.4(3)^{\circ}$, while all other chelate rings around the two metal cations are almost planar. The two bpy ligands around the $\mathrm{Ni}^{\mathrm{II}}$ cation are in a cis arrangement.

As shown in Fig. 2, complex cations related by the symmetry operation $(-x+1,-y+2,-z)$ [symmetry code (i)] are associated into pairs by hydrogen bonds between the coordinated water molecule and phenolic O atoms (Table 2). In this arrangement, a $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1^{i}$ separation of 5.5492 (9) \AA is observed. These pairs are, in turn, joined by the disordered C 2 perchlorate anions, resulting in a one-dimensional hydrogen-bonded structure parallel to the b axis.

There are also offset aromatic stacking interactions between the bpy ligands, linking the chains together (Fig. 3). The pyridine ring containing atom N 4 and that at $(-x,-y+1$, $-z$) [symmetry code (iii)] are parallel, with a centroidcentroid distance of 3.641 (2) \AA and a slippage of $1.500 \AA$. The smallest separation is between atom $\mathrm{C} 16^{\mathrm{iii}}$ and the reference
py(N4) ring [3.315 (5) \AA]. In addition, another $\pi-\pi$ stacking interaction occurs between the bpy ligand containing atoms N6 and N7 and that at $(-x+1,-y+1,-z+1)$ [symmetry code (v)]. The N6- and $N 7^{\mathrm{v}}$-containing rings have a dihedral angle of $3.9(2)^{\circ}$, with a centroid-centroid distance of 3.770 (3) A. The nearest separations are 3.345 (5) [C30 to $\mathrm{py}(\mathrm{N} 6)]$ and 3.357 (5) $\AA\left[\mathrm{C} 27^{\mathrm{v}}\right.$ to $\left.\mathrm{py}(\mathrm{N} 7)\right]$. The nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds given in Table 2 also play a role in the supramolecular structure. These interactions link the ions

Figure 2

A view of the one-dimensional hydrogen-bonded structure of (I), parallel to the b axis. Only one of the two half-occupied perchlorate anions is shown for clarity. [Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+1$, $-y+1,-z$.]

Figure 3
The $\pi-\pi$ stacking interactions in (I), viewed down the a axis. H atoms and perchlorate anions have been omitted for clarity. [Symmetry codes: (iii) $-x,-y+1,-z ;(\mathrm{v})-x+1,-y+1,-z+1$.]
into centrosymmetric pairs. Together with the $\pi-\pi$ stacking, a two-dimensional layer parallel to the (010) plane can be constructed. When the classical and nonclassical hydrogen bonds are considered together, a three-dimensional supramolecular structure is completed in the crystal structure.

As already stated, the same bridging ligand, cis-pdmapo ${ }^{3-}$, has also been used in complex (II) with a binuclear copper(II) cation (Gao \& Wang, 2010), in which the $\mathrm{Cu}^{\text {II }}$ cations at the inner and exo sites of the pdmapo ${ }^{3-}$ anion are in squareplanar and square-pyramidal environments, respectively. The exo $\mathrm{Cu}^{\mathrm{II}}$ cation coordinates to a phen ligand and a water molecule. However, in complex (I), the coordinated water molecule is transferred to the inner $\mathrm{Cu}^{\mathrm{II}}$ cation. In addition, the exo metal cation in (I), nickel(II), has two terminal bpy ligands because $\mathrm{Ni}^{\mathrm{II}}$ cations usually prefer six coordination to five, in contrast to the five-coordinate exo $\mathrm{Cu}^{\mathrm{II}}$ cation in (II). These differences lead to distinct supramolecular structures. Complex (I) has a three-dimensional supramolecular structure of classical hydrogen bonding and $\pi-\pi$ stacking interactions depicted as above. In complex (II), instead (according to our own analysis of the freely available crystallographic data), there is just a one-dimensional hydrogen-bonded chain parallel to [101]; the cations give rise to dimers through classical hydrogen bonds. The dimers and nitrate anions further build up a two-dimensional structure extending along the (010) plane by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking interactions. This is a clear example of how metal cations may play an important role in the way supramolecular structures are built up.

Experimental

All chemicals were of analytical reagent grade. $\mathrm{Na}[\mathrm{Cu}$ (pdmapo)]-$1.5 \mathrm{H}_{2} \mathrm{O}$ was prepared according to the method of Pei et al. (1991). The title complex was obtained as follows. A methanol (5 ml) solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0183 \mathrm{~g}, 0.05 \mathrm{mmol})$ was added dropwise to an aqueous solution (5 ml) of $\mathrm{Na}[\mathrm{Cu}($ pdmapo $)] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(0.0192 \mathrm{~g}$, 0.05 mmol) with continuous stirring. The mixture was stirred quickly for 0.5 h and then bpy ($0.0156 \mathrm{~g}, 0.1 \mathrm{mmol}$) in methanol (5 ml) was

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.924(3)$	Ni1-O3	$2.071(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.975(2)$	Ni1-N7	$2.077(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.980(3)$	Ni1-N6	$2.077(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.030(3)$	Ni1-N4	$2.079(3)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$2.456(3)$	Ni1-N5	$2.083(3)$
$\mathrm{Ni} 1-\mathrm{O} 2$	$2.051(2)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.85(3)$	$1.92(2)$	$2.763(4)$	$176(4)$
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 9^{\mathrm{ii}}$	$0.84(3)$	$2.23(2)$	$3.087(18)$	$167(4)$
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 12$	$0.84(3)$	$2.07(2)$	$2.871(10)$	$160(4)$
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.93	2.36	$3.176(12)$	146
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O} 10^{\mathrm{iii}}$	0.93	2.47	$3.226(10)$	139
${\mathrm{C} 26-\mathrm{H} 26 \cdots 7^{\text {iv }}}^{\mathrm{V}} 27-\mathrm{H} 27 \cdots \mathrm{O}^{\mathrm{v}}$	0.93	2.46	$3.322(8)$	154
C^{2}	0.93	2.49	$3.233(4)$	138

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+1,-y+1,-z$; (iii) $-x,-y+1,-z$; (iv) $x, y-1, z ;(\mathrm{v})-x+1,-y+1,-z+1$.
added dropwise. The solution obtained was stirred at 333 K for 6 h and filtered. Green block-shaped crystals of (I) suitable for X-ray analysis were obtained from the filtrate by slow evaporation at room temperature for 17 d (yield 65%). Elemental analysis calculated for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{ClCuN}_{7} \mathrm{NiO}_{8}$: C 48.67, H 4.21, N 12.04\%; found: C $48.93, \mathrm{H}$ 4.27, N 11.51\%.

Crystal data

$\left[\mathrm{CuNi}\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=814.37$
Triclinic, $P \overline{1}$
$a=11.4692$ (5) A
$b=11.8976$ (5) \AA
$c=15.1818$ (7) \AA
$\alpha=92.261(3)^{\circ}$

$$
\begin{aligned}
& \beta=109.043(3)^{\circ} \\
& \gamma=112.911(3)^{\circ} \\
& V=1770.51(15) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.27 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& 0.24 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.751, T_{\max }=0.833$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.131$
$S=0.96$
8178 reflections
515 parameters
45 restraints

15761 measured reflections 8178 independent reflections 4749 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.40 \mathrm{e} \AA^{-3}$

Both perchlorate anions (Cl 1 and Cl 2) are disordered around inversion centres at $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ and $\left(0,1, \frac{1}{2}\right)$, respectively, and correspondingly their occupancies were constrained to 0.5 . The $\mathrm{Cl}-\mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O}$ distances were restrained by similarity conditions (SADI 0.02 in SHELXL97; Sheldrick, 2008). Water H atoms were found in a difference Fourier map and further refined with restrained distances of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.35(1) \AA$; their isotropic displacement parameters were refined freely. Other H atoms were

metal-organic compounds

placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl) or $0.97 \AA$ (methylene), and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C). The methyl groups were allowed to rotate freely around the $\mathrm{C}-\mathrm{N}$ bond.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the Natural Science Foundation of China (grant No. 21071133) and the Natural Science Foundation of Qingdao City (grant No. 09-1-3-73-jch).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BG3135). Services for accessing these data are described at the back of the journal.

References

Addison, A.-W., Rao, T.-N., Reedijk, J., van Rijn, J. \& Verschoor, G.-C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Baron, V., Gillon, B., Plantevin, O., Cousson, A., Mathoniere, C., Kahn, O., Grand, A., Ohrstrom, L. \& Delley, B. (1996). J. Am. Chem. Soc. 118, 1182211830.

Brewer, G., Brewer, C.-T., Kamaras, P., Prytkov, S., Shang, M. \& Scheidt, W.-R. (2001). Inorg. Chim. Acta, 321, 175-180.

Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Wisconsin, USA
Cremer, D. \& Pople, J.-A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Cronin, L., Mount, A.-R., Parsons, S. \& Robertson, N. (1999). J. Chem. Soc. Dalton Trans. pp. 1925-1927.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fukita, N., Ohba, M., Shiga, T., Okawa, H. \& Ajiro, Y. (2001). J. Chem. Soc. Dalton Trans. pp. 64-70.
Gao, Z. \& Wang, Y. (2010). Acta Cryst. E66, m1249-m1250.
Jubert, C., Mohamadou, A., Gérard, C., Brandes, S., Tabard, A. \& Barbier, J.-P. (2002). J. Chem. Soc. Dalton Trans. pp. 2660-2669.

Larionova, J., Chavan, S.-A., Yakhmi, J.-V., Frøystein, A.-G., Sletten, J., Sourisseau, C. \& Kahn, O. (1997). Inorg. Chem. 36, 6374-6381.
Li, Y.-T., Wu, Q.-M., Yan, C.-W. \& Zhu, C.-Y. (2004). J. Magn. Magn. Mater. 283, 215-222.
Li, Y.-T., Yan, C.-W. \& Guan, H.-S. (2004). Synth. Met. 144, 69-73.
Lloret, F., Julve, M., Faus, J., Journaux, Y., Philoche-Levisalles, M. \& Jeannin, Y. (1989). Inorg. Chem. 28, 3702-3706.

Nakatani, K., Carriat, J.-Y., Journaux, Y., Kahn, O., Lloret, F., Renard, J.-P., Pei, Y., Sletten, J. \& Verdaguer, M. (1989). J. Am. Chem. Soc. 11, 5739 5748.

Nakatani, K., Sletten, J., Halut-Desporte, S., Jeannin, S., Jeannin, Y. \& Kahn, O. (1991). Inorg. Chem. 30, 164-171.

Nie, F.-M., Lu, F., Wang, S.-Y., Jia, M.-Y. \& Dong, Z.-Y. (2010). Inorg. Chim. Acta, 365, 309-317.
Pei, Y., Kahn, O., Nakatani, K., Codjovi, E., Matbonicre, C. \& Sletten, J. (1991). J. Am. Chem. Soc. 113, 6558-6564.

Real, J.-A., Mollar, M., Ruiz, R., Faus, J., Lloret, F., Julve, M. \& PhilocheLevisalles, M. (1993). J. Chem. Soc. Dalton Trans. pp. 1483-1488.
Ruiz, R., Faus, J., Lioret, F., Julve, M. \& Journaux, Y. (1999). Coord. Chem. Rev. 193-195, 1069-1117.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sun, W., Li, Y.-T., Wu, Z.-Y. \& Liu, J.-L. (2007). Acta Cryst. C63, m462-m464.
Tang, J.-K., Si, S.-F., Gao, E.-Q., Liao, D.-Z., Jiang, Z.-H. \& Yan, S.-P. (2002). Inorg. Chim. Acta, 332, 146-152.
Tang, J.-K., Si, S.-F., Wang, L.-Y., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Cheng, P. \& Liu, X. (2003). Inorg. Chim. Acta, 343, 288-294.
Tercero, J., Diaz, C., Ribas, J., Ruiz, E., Mahía, J. \& Maestro, M. (2002). Inorg. Chem. 41, 6780-6789.
Wang, H.-D., Chen, Y., Li, Y.-T. \& Zeng, X.-C. (2004). Thermochim. Acta, 142, 97-105.
Willett, R.-D., Gatteschi, D. \& Kahn, O. (1985). Editors. Magneto-Structural Correlations in Exchange Coupled Systems, pp. 523-554. Dordrecht: Reidel.

